

Corsham Technologies, LLC

www.corshamtech.com

617 Stokes Road, Suite 4-299

Medford, NJ 08055

xKIM Monitor

Introduction

The xKIM Monitor is an extension to the KIM-1’s built-in TTY monitor that adds a

few more useful commands and it meant to be easily extendable by users. It is

included as an EPROM with the Corsham Technologies 60K RAM/ROM board, but

can be used as a RAM based monitor as well.

During development, I had a very early version of xKIM in EPROM, then used the

command to load hex files containing more extended versions for debugging. I.e.,

the monitor was used to debug itself!

Features

• Includes support for the Corsham Technologies SD Card system. Along with

the low level driver functions, there are commands to do disk directories and

load hex files from the SD card.

• Commands to examine/edit memory, perform a hex dump and run memory

tests.

• All commands have help text. Brief, but better than nothing.

• Easy to add new code directly to the monitor.

• Monitor can be extended; load additional commands from the SD card.

• Vectors to many useful subroutines in the monitor, so making changes to the

monitor does break existing code.

• Can run out of RAM or ROM.

• No additional RAM used in zero page or the standard memory on the KIM-1.

The extended monitor re-uses existing KIM-1 memory.

 - 2 -

• No heavy legal mumbo-jumbo. Feel free to use the code.

Starting the xKIM Monitor

Your KIM-1 needs to be running using a TTY (terminal) interface. Set the starting

address of where xKIM begins and run:

Press RS on KIM-1

Press ENTER on console

KIM

135E 3E E000 space

E000 4C G

Extended KIM Monitor v0.3 by Corsham Technologies, LLC

www.corshamtech.com

>

At this point, hit a question mark to get available help:

>?

Available commands:

? Show this help

B Bob's Tiny BASIC

C Show clock

D Disk directory

E xxxx Edit memory

H xxxx xxxx . Hex dump memory

J xxxx Jump to address

K Go to KIM monitor

L Load HEX file

M xxxx xxxx . Memory test

O xxxx xxxx . Calculate branch offset

P Ping disk controller

S xxxx xxxx . Save memory to file

T Type disk file

! Do a cold start

Some commands take additional arguments. Unless otherwise specified, the

arguments are always hex numbers with exactly the number of digits show. So, for

example, if you want to hex dump memory from 0000 to 00FF, you would enter four

zeros, then two more zeros and two “F”s.

 - 3 -

If you type a non-hex value then the command is immediately aborted and

command returns to the prompt.

Some commands apply only when you have an SD Card System installed, such as D,

P, S and T.

The L command can download a HEX format file from either the SD card or the

terminal. When you press L it will ask for the filename to load. If you press RETURN

then it will assume the file is being downloaded from your terminal program.

Cold versus Warm Start

Vectors to Internal Functions

To allow user written programs to use some of the handy subroutines present in the

xKIM Monitor, a set of vectors sits at the start of the code. User programs, including

extensions, should only call subroutines via the vectors and never directly jump to

code inside or use data that is not defined as being public.

The addresses listed here assume xKIM is in EPROM starting at location E000, such

as found on our KIM 60K RAM/ROM Board. If you are running xKIM from RAM then

the addresses will be different.

RAM Locations

Address Name Description

DFFA ColdFlag Cold flag. The contents of these two locations

are used to determine if the monitor is in a

warm start or cold start state.

DFFC ExtensionAddr Address of any user extension. If a user

extension is loaded, the starting address of the

command table should be placed into these

locations, LSB first.

DFFE HighestAddress Contains the highest address in RAM that user

programs may occupy. Your programs are free

to adjust this down to reserve space at the top

of RAM.

Cold/Warm Start

 - 4 -

Address Name Description

E000 extKim Entry point. This handles both cold and warm

entry. Any user written program or monitor

extension should jump to this location when

done. This uses the Cold Flag at DFFC to

determine if this is a cold or warm start. This

should be JMPed to, as it does not return.

Console Input/Output

Address Name Description

E003 OUTCH Output the character in A to the console.

E006 GETCH Wait for a character from the console and

return it in A. Character is echoed.

E009 GETCHNE Same as E006 for now, but was intended not to

echo.

E00C consolePoll Currently unused but is meant to poll to see if a

character is ready for reading.

E00F putsil Print string in-line. The address after the JSR to

this function contains an ASCII string that is

printed until a 0 byte is found.

E012 getHex Gets a two digit hexadecimal number into A and

carry clear. If a non-hex value is entered,

returns the offending character in A and carry

set.

E015 prtHex Prints the contents of A as two hex digits.

E018 getStartAddr Gets a four digit hex number and saves it in

SAL/SAH (17F5/17F6) and carry clear. If a

non-hex character is entered, return C set and

the offending character in A.

E01B getEndAddr Gets a four digit hex number and saves it in

EAL/EAH (17F7/17F8) and carry clear. If a

non-hex character is entered, return C set and

the offending character in A.

E01E getAddrRange Does a call to getStartAddr and then

getEndAddr to set up a range of addresses.

Reserved for Future Use

It is highly likely that we’ll add more useful subroutines to the monitor and make

them available, so we’re reserving some vectors for those future uses.

 - 5 -

Address Name Description

E021 Reserved

E024 Reserved

E027 Reserved

E02A Reserved

E02D Reserved

E030 Reserved

Low Level SD Card

Address Name Description

E033 xParInit Initializes the interface for the SD Card system.

E036 xParSetWrite Sets SD card direction for writes.

E039 xParSetRead Sets SD card direction for reads.

E03C xParWriteByte Writes A to the SD card system.

E03F xParReadByte Reads one byte from SD card system into A.

Higher Level SD Card

Address Name Description

E042 DiskPing Does a sanity check to verify the SD controller

system can be reached. Returns C if SD system

is on-line, C set if not.

E045 DiskDir Begins a directory read of the SD card. Takes no

input parameters, but returns with C clear on

success, or C set on error. Use DiskDirNext to

read disk directory entries.

E048 DiskDirNext On entry, X (MSB) and Y (LSB) point to a buffer

area large enough to get the next directory

entry. Returns C set if end of directory is

reached (buffer has no valid contents) or C clear

and X/Y point to null at end of filename.

Currently, the buffer area should be 13 bytes.

E04B DiskOpenRead Open a file for reading. On entry, X (MSB) and Y

(LSB) point to a null-terminated filename. On

return C is clear if the file is open or set if not.

E04E DiskRead Reads the contents of an open disk file. On

entry, X (MSB) and Y (LSB) point to the buffer

area, and A contains the number of bytes to

read. On return C is set on error, else C is clear

and A contains the number of bytes actually

read into the buffer.

E051 DiskClose Closes an open disk file.

 - 6 -

Making Changes Directly

If you’ve got some new commands and want to make them permanent, then the best

way is to add them directly to the main source code. You can follow the existing

logic and commands to see how to re-use existing functions to get addresses and

perform other low-level functions.

Notice the label commandTable, as this command structure is used both for internal

commands and also user written extensions. Each command consists of a five byte

entry:

• ASCII character of command (1 byte)

• Pointer to the code that processes this command (2 bytes, LSB first)

• Pointer to brief command description (2 bytes, LSB first)

If you add your own vectors, please put them after the SD card vectors. While we

might be adding new vectors there, no space was specifically allocated for them. Or,

if you’re willing to share the code, we can add it to the distributed versions.

Adding An Extension

Something I’ve wanted for long time is an easy way to add new commands to a

monitor without making those extensions look like they were added later, so this

was my chance to make that happen!

An extension is just a short program that hooks right into xKIM and adds additional

commands seamlessly from the user’s perspective. A very simplistic example is

provided but here it is to show how simple it is.

;===

; A sample extension for the Extended KIM monitor.

; This is a very simple example of how to write an

; extension (adding a new command) for the

; Extended KIM monitor.

;

; How can you test this? Easy. First, use the "?"

; command in the extended monitor and verify the

; "Z" command is not listed, then load the binary

; version of this file. Do "?" again and you'll see

; the new command has been added and can be used.

;

 - 7 -

; 12/26/2015 - Bob Applegate, bob@corshamtech.com

;

; Consider buying a KIM-1 board from us:

; www.corshamtech.com

;===

;

; First, define some common ASCII characters

;

LF equ $0a

CR equ $0d

;

; Where the Extended KIM monitor starts in memory

;

EXTKIM equ $e000

;

; These are subroutines and addresses in the extended

; KIM monitor we can use.

;

 bss ;uninitialized data segment

 org EXTKIM-6

ColdFlag ds 2 ;cold start flags

ExtensionAddr ds 2 ;address of extension ptr

HighestRam ds 2 ;highest available RAM

 org EXTKIM

extKim ds 3 ;extended monitor

outch ds 3 ;output A to console

getch ds 3 ;get a key and echo

getchne ds 3 ;no echo - KIM can't do it

spare1 ds 3 ;future - console stat

putsil ds 3 ;print string after JSR

getHex ds 3 ;get hex value in A

PRTBYT ds 3 ;print A as hex

getStartAddr ds 3

getEndAddr ds 3

getAddrRange ds 3

;

; There are more vectors but I didn't need them

;

;===

; The actual sample

;

 code

 org ExtensionAddr

;

; Set up the pointer to our sample extension...

;

 dw Extension

 - 8 -

;

; This is the table of commands being added. Each

; entry has exactly five bytes:

;

; Single character command

; Address of code for this command

; Descriptive text for this command

;

; After the last entry, the next byte must be zero

; to indicate the end of the table.

;

 org $0400

Extension db 'Z' ;adding the 'Z' command

 dw zCode ;pointer to code

 dw zHelp ;pointer to help

;

 db 0 ;END OF EXTENSIONS

;

; The descriptive text...

;

zHelp db "Z Describe a zoo",0

;

; And the actual code...

;

zCode jsr putsil ;call display function

 db CR,LF

 db "A Zoo is a place with "

 db "lots of animals."

 db CR,LF,0

 jmp extKim ;return to Extended KIM

 - 9 -

Revision History

Version Changes

A Initial Beta.

1 Initial release

Errata

REV 1 Incorrect Chip

IC4 is incorrectly identified as a 74LS241 on both the schematic and PC board. The

device is actually a 74LS244.

Updating Rev 1 PC Boards

Users who buy assembled boards do not need to do any of these steps, as they were

applied when we built your board. For someone building from a bare board, these

steps will ensure the extended memory works properly. Without the mods, the

board functions except that writes to the DAT registers will result in memory

corruption. I.e., if you only use the base 64K RAM then none of these mods are

needed.

To perform the modifications, you will need a sharp hobby knife to cut some traces,

some #30 wire, a stripper for the wire, and a soldering iron. It is recommended that

all cuts be made prior to installing any components, as at least one trace is obscured

once an IC socket is installed, necessitating several more cuts and jumpers.

Cuts

1. Cut trace on IC6 between pins 30 and 32 (bottom side) close to pin 30 (leave

trace from pin 32 to IC7 pins 1 and 28.

2. Cut trace between IC4 pin 19 and IC20 pin 7 (bottom).

3. On top of board, cut short trace from IC4 pin 19 to the via immediately

adjacent to it.

 - 10 -

4. On bottom, cut trace from IC4 pin 13 to ground.

5. Locate IC10. Between pins 6 and 7, and 8 and 9 is a trace. Cut that trace. It

does not matter if it is cut above or below IC10. Follow the trace down to a

via right above SS-50 pin30. You’ll need to know where this pad is for the

next step.

Jumpers (install IC sockets before doing these)

1. On the bottom of the board, solder a wire from IC4 pin 7 to the pad located in

the previous step. Verify continuity from IC4 pin 7 to SS-50 pin 41.

2. Install jumper on bottom side from IC6 pin 30 to IC14 pin 8.

3. Install jumper from IC4 pin 19 to IC15 pin 1.

4. Install jumper from IC4 pin 13 to pin 14 (adjacent pins).

5. On bottom, install jumper from IC4 pin 1 to IC20 pin 7.

New Part

1. Install a 6.8K resistor on bottom side of board on IC1 between pins 7 and 32.

